
Architecture for Collaborative Translation Synchronization

Louis-Philippe Huberdeau

February 15, 2008

As part of the Cross Lingual Wiki Engine Project1,
an architecture to track changes across translations
had to be created. The purpose of the architecture is
to allow concurrent modi�cation of any of the trans-
lated pages, track the changes and their propagation.
The architecture does not attempt to control the con-
tent �ow or to restrict it. However, it can be used to
provide information about the state of the translation
at any point in time.
The architecture is based on the fact that each lan-

guage has its own dedicated page and that page his-
tories are independent. This architecture was imple-
mented as part of the multilingual support in Tiki-
Wiki. The mechanisms rely on human translation of
the content. No machine translation is considered.
This document explains the theory behind the ar-

chitecture as well as the implementation details. Ex-
planations are built around a sample case. In ex-
plaining the implementation, many ways to express
the theory are used.

1 Use case

In order to illustrate the theory, an example will be
used through the entire document. The example pro-
poses a single page translated in three di�erent lan-
guages: English, French and Spanish. The actual
implementation can work with an unlimited amount
of translations. The limit set in the current use case
is applied to reduce the complexity of the example.
A page is �rst created in English. Two modi�ca-

tions are made to the content. At some point in time,
a �rst translation is made to French and Spanish.

1Project hosted on Wiki-Translation http://

wiki-translation.com

At that point, the content of all pages is equivalent.
Later on, additional content is added to the French
page. Changes made to the French page are then ap-
plied in the English version, making them synchro-
nized. Additional content is then added to the Span-
ish page. Afterward, a Spanish translator updates
his version of the page using the English version.
At this point in time, the English and French pages

contain equivalent content. The content of the Span-
ish page is more advanced as it incorporated the
changes from the French page through the English
page and added content of its own. The system
should indicate to both English and French readers
that improved content exists in the Spanish transla-
tion.
In this example, English was used as a pivot lan-

guage. All modi�cations made to pages were �rst
translated to the English version before reaching
other translations. This model is driven by social
factors. The proposed architecture is not limited to
this behavior. The decision should be driven by com-
munity culture or reinforced by additional tools. The
architecture only keeps track of content.
The architecture does not restrict the order in

which content propagation is made. Users are not
forced to update their page from all other languages
before adding content. Such a limitation would pre-
vent some contributions from being made.

2 Use case as sets

From the use case, the state of the page at any point
in time can be represented as a set of content ele-
ments. In �gure 1, content elements have been given
letters. A content element could be content addition,

1

Figure 1: Use case represented as sets

removal or reorganization. It only matters that the
change applied to the source page is original content
and should be propagated to all translations.

The representation of translations as sets allows to
ignore the synchronization points between languages.
The current approach places the focus on the content
of the pages themselves as modi�cations made by au-
thors. Trying to identify the point in time when two
pages are synchronized would usually require human
validation. Instead, this model keeps track of which
unique modi�cations the page has been exposed to.
Pages that have been exposed to the same modi�ca-
tions are considered equivalent. Similarly, pages that
have been exposed to more modi�cations can be con-
sidered superior. Because the architecture is based
on human translation with no additional validation,
relying simply on content exposure may not be reli-
able. Section 6 discusses these issues.

For the sake of simplicity, the graphic begins at
the point right before the initial translations are pro-
duced. Figure 1a represents this state where only the

English version exists and contains the content from
its initial creation and the two subsequent edits.
Figure 1b presents the situation where both initial

translations exist. At that point in time, the con-
tent of all three translations can be considered syn-
chronized as the content was translated from English.
All changes made to the English page in the past are
represented in the translations.
When content is added to the French page, the

content available in the other translations becomes
only a subset of the French translation. As seen in
�gure 1c, English and Spanish remain untouched and
are still equivalent, but an additional element was
added to the French set.
In �gure 1d, the English version incorporates the

changes made to the French version. After this
step, French and English become equivalent again.
Only the Spanish version remains without the latest
changes.
Afterward, new content is inserted in the the Span-

ish version without any attention taken to the other
translations. A strong division in the content of the
Spanish version in relation with the equivalent En-
glish and French can be observed in �gure 1e.
In the �nal step, the Spanish version incorporated

the changes from the English. As English previously
incorporated the changes from the French transla-
tion, the Spanish version now contains all changes.
As it can be seen in �gure 1f, Spanish is now a super-
set. The English and French versions remain equiva-
lents.
To make all translations equivalent, both English

and French would need to update their content.
Consider α to be the source page and τ the trans-

lation target. Ω is the set of translations for a given
page. The translation set is a set of related pages. θ
is used to represent any page in the translation set.
C(θ) is the set of content elements of page θ. Φ is the
set of all content elements available in the translation
set.
The objective of content synchronization is to reach

a point where C(θ) = Φ to make the page fully up
to date.
In trying to reach this objective, content must be

tracked during its evolution. Content tracking can
be reduced to two distinct operations. The addition

2

of new content can be seen as the inclusion of a new
element in the set as seen in formula 4 and 5, in
which δ is a new content element. The other oper-
ation is content propagation and is used when per-
forming a translation from source to target as seen
in formula 6. For a new translation, τ is initially de-
�ned as an empty set. Formulas 1 to 3 de�ne validity
constraints for the model.

α, τ, θ ∈ Ω (1)

∀σ ∈ Ω (C(σ) ⊆ Φ) (2)

∀γ ∈ Φ∃σ ∈ Ω (γ ∈ C(σ)) (3)

C(α)′ ← C(α) ∪ {δ} (4)

Φ′ ← Φ ∪ {δ} (5)

C(τ)′ ← C(τ) ∪ C(α) (6)

The representation of the content as a set allows
to quickly observe where additional content can be
found in other translations. From a snapshot of the
content of the pages in their current version, it is
possible to determine if translations need updates.
Formula 7 presents the condition to validate to deter-
mine if an update is required from source to target. A
target page needs update from the source page if the
source page contains a content element not present
in the target.
Formula 8 indicates if a page θ requires an update

without targeting a speci�c source. The NU(θ) pred-
icate indicates that θ needs an update. NUF (α, τ)
indicates that τ needs an update from α.
A page needs an update if if does not contain all

the content elements available in the translation set.

∀α, τ ∈ Ω (∃σ ∈ C(α) (σ /∈ C(τ))⇒ NUF (α, τ))
(7)

∀θ ∈ Ω (C(θ) ⊂ Φ ⇒ NU(θ)) (8)

An other interesting representation of this concept
is to see each change performed as a binary �ag on
the translation page. Each binary �ag is a bit that
must be translated to other languages for content to
be synchronized. Table 1 presents the evolution of
the use case using this representation.
Using such a representation, very simple bitwise

operations can be performed to determine if a page
is up to date. A bitwise or can be used to merge
the translation bits during the propagation and an
exclusive or can be used to highlight the missing bits.

3 Representation as a graph

The representation of the content as elements of a set
provides a good way to observe the relationships be-
tween the languages and it allows to perform multiple
common operations. However, as the view is based on
snapshots, it provides very little information about
the evolution of the content. Such an evolution is
better represented as a graph.
As presented in �gure 2, the use case above can be

represented as a directional graph. More information
than necessary was incorporated in the illustration to
link to the story more closely and connect to the set
representation.
In the graph, page evolutions are represented by

solid edges. Page translations are represented by
dashed edges. Each node represents a page version.
In the nodes, the page language and page version is

indicated on the �rst row. The second row contains
the content elements incorporated in the version. The
content element letters match the ones used in the set
representation.
The graph contains two types of nodes. The white

nodes are page versions created from a page edit.
With them, a new content element is added. The
gray nodes are page versions created from a transla-
tion e�ort. They only incorporate content elements
from their source version.
The illustrated graph can be de�ned like this:

V = {
en.1, en.2, en.3, en.4,

3

Table 1: Evolution of the use case represented using translation bits

Step English French Spanish

Page created in English 1 0 0

Modi�cation made to the content 11 00 00

Modi�cation made to the content 111 000 000

Original translation to French and Spanish 111 111 111

Modi�cation made to the French translation 1110 1111 1110

Incorporation of changes from French to English 1111 1111 1110

Modi�cation made to the Spanish translation 11110 11110 11101

Incorporation of changes from English to Spanish 11110 11110 11111

fr.1, fr.2,
es.1, es.2, es.3}

E = {
(en.1, en.2),
(en.2, en.3),
(en.3, en.4),
(fr.1, fr.2),
(es.1, es.2),
(es.2, es.3),
(en.3, fr.1),
(en.3, es.1),
(fr.2, en.4),
(en.4, es.3)}

As it can be seen, the graph representation presents
the relationships between the di�erent page versions
to create paths in which the content elements will
propagate. Content elements reach every node after
which they have been introduced. The graph itself
can be used to rebuild the set representation. Con-
tent elements get created when the vertex is not di-
rectly reached by an edge from an other translation.
Figure 2 presented a uni�ed graph of the histor-

ical information and the translation paths. Smaller
graphs can be represented for each content element by
ignoring the version information as presented in ta-
ble 2. These graphs can be combined into a weighted

Table 2: Translation bit paths

Translation bit V E

A {en, es, fr} {(en, fr), (en, es)}
B {en, es, fr} {(en, fr), (en, es)}
C {en, es, fr} {(en, fr), (en, es)}
D {en, es, fr} {(fr, en), (en, es)}
E {es} {}

graph to identify the most common translation paths.
In the same way, missing translation paths or paths
that could use more frequent updates could be iden-
ti�ed.

The graph representation highlights the paths in
which the content �ows. Sections where the con-
tent evolves independently and junction nodes where
the content is being incorporated can be clearly seen.
The time-line view allows to understand the dynam-
ics around the translation process. Over a long period
of time, the information gathered by the graph mod-
els could help identify the language clusters and �nd
bottlenecks in the translation process. Such infor-
mation will allow to orient future developments and
orient the community e�orts. On a weighted graph
with weak links eliminated, the structure of the trans-
lation community could be observed.

4

Figure 2: Use case represented as a graph

Unlike the set representation, the translation from
which the content was propagated is known. The
graph representation provides an audit trail that
could be required in multiple usage scenarios. It
could also be used to perform simple veri�cations of
the quality of the translation.

Because the architecture is based on human trans-
lation and it inherently trusts translators to apply
the modi�cations correctly, degradation may occur
over time. Using the example with three languages,
the longest path from one language to the other is
of two translations. It is probably safe to believe
that the content of D is very similar to the same
content element in Spanish, especially since all lan-
guages are Latin-based. In a larger context with 18
concurrent languages, the content propagation paths
between two languages could be much longer and re-
sult in signi�cant changes. Long paths could be used
to signal the need for review.

Alternatively, the translation community could
structure the translation paths following a pivot or
multi-pivot model to reduce the length of the trans-
lation paths.

4 Implementation

Because of the established test sites by the Cross Lin-
gual Wiki Engine Project, the implementation had
to be made as a part of TikiWiki. In the Open
Source application, all the content is stored in an SQL
database. A table was already available to de�ne the
translation sets. Only the actual tracking informa-
tion had to be added.

Because all the content is already available in SQL,
the additional information stored for tracking also
had to be stored in the same way. Because un-
derstanding collaborative translation is an important
part of the Cross Lingual Wiki Engine Project, the
graph information had to be preserved. Simply stor-
ing the set information was not su�cient. However,
because fast response times are required, only keep-
ing the graph information was also not an option. Re-
building the graph and running algorithms on every
page load is simply not possible. Graphs will tend to
grow in an unbounded way over time and decreasing

5

performance would be observed.

The selected implementation stores the informa-
tion as a graph in a table and uses a cache �eld in
the table to reference to the �rst node of the graph for
each translation bit. This strategy allows to keep all
the graph information to study collaborative trans-
lation patterns and to execute the fast set opera-
tions required for common information display re-
quirements. Information to relate to the page history
and an additional �eld for extensions was added. Ta-
ble 3 presents the table structure.

Table 3: Table structure
Field Description

translation_bit_id The primary key of the
table. One entry for each
bit created or propagated
is created.

page_id Foreign key to the page.

version The version at which the
translation bit appeared
on the page.

source_translation_bit The translation bit from
which the page was
propagated. This �eld
allows to build directional
graphs.

original_translation_bit The cache translation bit
pointing to the �rst
translation bit created.
This value could also be
obtained by a recursive
fetch on the source
translation until a NULL
value is found.

�ags Allows to set special �ags
on the translation bits to
describe their purpose or
to categorize them.

The table does not contain any direct input from
the user other than the ��ags� �eld. The data collec-

tion is fully automated and driven by the work�ows in
the user interface. When a normal edit is performed
on a page, a translation bit is created. No translation
bits are created for minor edits as those are only used
for quick correction of typos or formatting mistakes.
Information extracted from the table itself allows

to present links that lead to a translation inter-
face. The translation interface presents the di�er-
ences made to the page since the last update. Once
the changes are saved, all translation bits from the
source page until the translated version are propa-
gated to the target page. The translation bits are
completely transparent to the users as they only need
to follow the natural work�ow of translation and the
system updates it's relationships correctly.
In the future, support for incomplete translation

will need to be supported. In many cases, transla-
tors may choose to translate large texts in multiple
edits, which may or may not be in the same session.
An incomplete translation would not propagate any
translation bits. Instead, all bits would be trans-
ferred during the �nal, complete, translation. It is
not possible to manually select which bits have been
translated as part of an edit as the only way to do so
would be to refer to the original change in the orig-
inal language. The translator may not understand
the original language.
However, the ��ags� �eld requires special user at-

tention. Currently, the only �ag supported by the im-
plementation is the �critical� �ag. It allows to mark
a change as very important. Once the �ag is set, the
other translations display a warning indicating that
the content of the page they are looking at is inac-
curate and that an update is required. When the
target translation is updated, the warning message
disappears automatically.
This was a special requirement to handle cases

where a page's content may lead to signi�cant errors.
In order to mark an edit as critical, the user must
request it manually during the page edit.
A generic ��ags� �eld was added rather than a spe-

ci�c �eld for this situation. Additional �ags could
be added to indicate lower priority changes or to add
change classi�cation information. Because the �eld is
generic, �exible algorithms can be developed to suit
unexpected user needs.

6

When a content element is created as part of a nor-
mal edit, both �source_translation_bit� and �origi-
nal_translation_bit� are set to NULL. This allows
to quickly identify the distinct translation bits avail-
able.
A single propagation operation can create mul-

tiple translation bits on the target page. Dur-
ing the propagation, �translation_bit_id�, �origi-
nal_translation_bit� and ��ags� from the source
page that are not already included in the tar-
get version are collected. Translation bits
are then added to the target page by specify-
ing the �source_translation_bit� as the �transla-
tion_bit_id� matching the missing translation bit.
The original translation bit is copied directly from
the �original_translation_bit� of the source unless
the source's original translation bit is NULL, in which
case �translation_bit_id� is used instead. The ��ags�
�eld is copied directly without modi�cation.
Using these rules, table 4 presents the resulting

data of the use case presented earlier. In the data
set, �page_id� 1 is English, 2 is French and 3 is Span-
ish. To human readers, this content is hard to un-
derstand. However, it contains all the relationships
required to rebuild the graph or the sets. Multiple
queries can be used on the table to obtain useful in-
formation to present to the end user. Algorithm 1 is
a query that can be used to generate a list of bet-
ter pages. By this algorithm, a better page is a page
containing translation bits not present in the current
page. The query presented here is a simpli�ed version
from the one used in the real application. The com-
plete query also fetches information about the page
languages to adapt the output to user preferences as
well as information about the translation history to
create translation links.
A similar query to fetch worst pages has been writ-

ten. A worst page is a page missing some of the
translation bits contained in the current page. The
list of worst pages is used to display the list of pages
that could be improved based on the currently viewed
content.
A query to fetch the missing translation bits on a

page is also available. The query has an additional
��ag� parameter to reduce the list to translation bits
containing the given �ag. With this parameter, the

Table 4: Table content using the sample use case

tr
a
n
sl
a
ti
o
n
_
b
it
_
id

p
a
g
e_

id

v
er
si
o
n

so
u
rc
e_

tr
a
n
sl
a
ti
o
n
_
b
it

o
ri
g
in
a
l_
tr
a
n
sl
a
ti
o
n
_
b
it

1 1 1

2 1 2

3 1 3

4 2 1 1 1

5 2 1 2 2

6 2 1 3 3

7 3 1 1 1

8 3 1 2 2

9 3 1 3 3

10 2 2

11 1 4 10 10

12 3 2

13 3 3 11 10

query is used to obtain the list of critical updates
that must be applied. A separate query can then get
the list of available sources for each translation bit.
Together, can can indicate that the current page is in-
accurate and provide a list of alternative translations
to view.

Searching the table for the correct versions to per-
form the content di�erences on in order to present the
content to the translators is a complex operation. It
can be performed as a sub-query in most page list-
ings as long as the source and target pages are known.
The intuitive way to do so is to search for the last syn-
chronization point between two pages. This tends to
bring long text di�erences as target may have been

7

Algorithm 1 Obtain the list of pages with more
translation bits
SELECT DISTINCT
page.pageName page

FROM
tiki_translated_objects a
INNER JOIN tiki_translated_objects b
ON a.traId = b.traId AND a.objId <> b.objId

INNER JOIN tiki_pages page
ON page.page_id = a.objId

INNER JOIN tiki_pages_translation_bits candidate
ON candidate.page_id = page.page_id

WHERE
b.objId = ?
AND IFNULL(
candidate.original_translation_bit,
candidate.translation_bit_id) NOT IN(
SELECT
IFNULL(
original_translation_bit,
translation_bit_id)

FROM tiki_pages_translation_bits
WHERE page_id = b.objId

)

used to update the source in between. Attempts to
search for the last update point in both directions
can be made to improve the situation. However, this
may lead to content loss, even in a structured model
like pivot.

Algorithm 2 presents a query that can extract the
appropriate page version to perform the content di�
from based solely on the presence of translation bits.
The appropriate version is the version right before
the lowest version in which a translation bit exists in
the source but does not yet exist in the target. If no
such version are found, meaning a complete transla-
tion was never performed, version 1 will be returned
as forced by the default value. In some cases, this
strategy may show some content that was already
propagated to the target through other paths, but
all changes required to propagate the translation bits
will be present.

Using the contained translation bits as the only
reference in the history look-up also has the advan-
tage of having the content di� behaving in a much
more logical way in environments with a large num-
ber of languages and irregular translation paths than
searching for synchronization points between source
and target. No matter where the propagation of the
translation bits came from, the content di� will be
based on the new translation bits added.

Algorithm 2 Obtain the source version of a content
di�
SELECT
IFNULL(
IF(MIN(version) = 1, 2, MIN(version)),
2) - 1

FROM tiki_pages_translation_bits
WHERE
page_id = :source
AND IFNULL(original_translation_bit, translation_bit_id)
NOT IN(
SELECT
IFNULL(original_translation_bit, translation_bit_id)

FROM tiki_pages_translation_bits
WHERE page_id = :target

)

5 Usage in a wiki with a staging

phase

Some websites using a wiki engine to edit content add
an additional staging phase to make sure the content
presented to the end user is valid and accurate. In
TikiWiki, the staging feature works by maintaining
two separate set of pages. One of the set is hidden
from non-editors and used to perform the edits on.
The second set is the set pages containing the ap-
proved content. Only the approved set is presented to
the non-editors. When the staging version of a page
is approved, the revisions made to the staging page
are copied over to the approved page. The approved
version becomes a verbatim copy of the staging ver-
sion, including all history details.

This process causes problems in the way the trans-
lation bits are created and propagated. Since ed-
its and translations are only performed on the stag-
ing pages, the approved versions do not contain any
translation tracking information and cannot provide
valuable content to the end users.

Because the approved page is a verbatim copy of
the staging version until a certain point in time, the
translation bits from the staging version can be used
to provide the information. However, the queries
made to the table must be limited to the versions
available the approved page. More content elements
may be available in the staging pages and those will
not be accessible to the non-editors.

With added complexity in the fetch queries, the
copy of translation bits and trouble related to correct

8

handling of the propagation can be avoided.

6 Handling subjectivity in

translation

Human translation requires interpretation of the con-
tent. In most cases, translators will attempt to match
the source content as closely as possible. However, in
some cases, information may be altered in the pro-
cess. For cultural reasons, some aspects may be left
out of a given translation or di�erent interpretations
may be preferred. While this does not make much
sense in a documentation e�ort, when dealing with
political or religious aspects, it may be more frequent.

Deciding if such an interpretation of facts is desired
during the translation e�ort is a community decision.
It was established early on by the Wiki-Translation
community that such interpretations should not be
blocked in all situations. Instead, the tools should
encourage synergy between translations and let them
evolve independently.

Keeping the ethical aspects out of the question,
there are other situations in which it may be desirable
for content to be di�erent between translations. An
example of this is in a worldwide marketing �rm. The
business cases developed for the French market and
the US market are very likely not to be the same.
Some companies have high prestige in some areas of
the world and are unknown in others. An attempt
to perfectly align the translations would only create
documentation poorly adapted to its market.

Interpretation during translation is perfectly valid.
However, the current architecture is vulnerable to the
telephone game2. From the moment a translation is
made, the newly translated page becomes a possible
source for further translations. There are no ways
for translators to know if the source they are look-
ing at is equivalent to the original change. Over long
chains of translations the content could become en-
tirely di�erent. The problem could be avoided by not
making the translation, but the page would then be
considered permanently out of date.

2The telephone game is also known as Chinese whispers

http://en.wikipedia.org/wiki/Chinese_whispers.

This could be solved by letting the engine know
about subjective translations. When a translator
makes a di�erent interpretation of the facts, he could
mark it as such. In this case, the bits propagated
would be marked as subjective. This special �ag on
the bits would indicate that, while the translation is
up to date, it may not be used as a source for those
particular bits. Moreover, an additional content ele-
ment should be created as part of the operation. As
the translation is in fact adding new content to the
article, other translations could also bene�t from the
interpretation made.

Making strong interpretations in the content will
break the alignment of the translations. From the
moment one interpretation is made, it is very likely
that all subsequent translations will also be subjec-
tive. However, this technical reality is only a re�ec-
tion of the nature of the content.

The mechanism still relies on trusting the transla-
tor to perform the job correctly and indicating devi-
ations when they occur. In order to avoid spreading
mistakes, it should be possible for a moderator to
mark a translation as subjective after the fact. For
that matter, a moderator should be able to cancel a
translation in the case it was not performed correctly
or not at all. Wiki pages allow to undo changes. The
primary reason they work well in collaboration e�orts
is that the cost of correcting errors is very low. The
translation architecture should propose functionality
to bring this simplicity to handling of translation syn-
chronization.

For any situation where the quality of the content
and its translations is important, a review process
should be in place. In a wiki, the review process is
done naturally by the following visitors. However,
in collaborative translation, a normal visitor will not
get an overview of the translation situation as he does
on a single page. Additional mechanisms for review
will have to be used. These could be ad-hoc by having
moderators watching translation sets or supported by
tools.

9

7 Conclusion

The architecture presented above meets all the
project's requirements in terms of data collection and
also allows to present interesting information to the
end users. The integration in the wiki itself will need
improvements, but the architecture provides a good
foundation for change tracking in collaborative trans-
lation.
Many special cases will require customization of

the architecture usage. Page staging and subjective
translation are two examples. The architecture was
not created to be a governing solution to translation
problems. It focuses on tracking changes between
languages to simplify their synchronization. The ar-
chitecture is only a part of the Cross Lingual Wiki
Engine Project, which aims to solve those broader
issues.
By collecting data, the architecture should help us

understand what it means to translate collaboratively
and �nd out what the real issues to solve are.

10

