Localization
Better, faster, easier through sharing resources

In 2001, a 30+ team of programmers was to develop a large application (it still is under
development) that would replace more than 20 legacy applications.

Phase 1 deliverables had a fixed mandatory date, and time was running fast.

Translation Bureau could really not deliver in only one official language and the
translation later. Official Languages Act makes it mandatory to deliver documentation
and software simultaneously in English and French. So it really had to be delivered
simultaneously in both official languages.

Back in 2001, some people were proud to say that they could take "only" one month to
translate rather than six or nine as soon as the development would stop. In our case, the
solution was to translate during the development, and to maintain terminology and
definitions from day 1. Developers could consult language specialists to maintain a better
terminology, translators could consult programmers to do a better translation, and the
process was seamless.

From the moment where programmers stopped to work on phase 1, 12 hours later the
application was delivered in both official languages. This was the result of a collaborative
effort involving programmers and translators and using a terminology management tool
as a common ground.

Developers would all textual resources (button, menus, error messages, etc.) in the
terminology management software and indicate what linguistic process should be done
(translate, revise or translate and revise). A few lines of programming allowed one to
generate the interface whenever required.

Since start, there were conventions to respect the rules of internationalization that applied
(leave enough space for French that is longer than English, never merge messages, use
specific rather than generic messages, etc.) In addition, they could provide the translators
items of info that are lacking in most localization jobs.

Programmers could also search for existing items rather than reinventing the wheel.
Various search methods allowed to find rapidly. This would avoid the translators to call
programmers so that they can tell what is the difference between two almost identical
texts (when there was none).

The phone numbers of authors were automatically logged, so that they could be reached
if any clarifications were still needed. But translators really did not have to call often.

Sometimes, the programmer was bilingual, he would then write directly a name for the
button or his message in both languages, but would then check the option Revise.
Otherwise, he would check Revise and translate. Some programmers know it is a good
idea to have their text revised, even in their mother tongue.

The translators could easily find the records that needed to be translated or revised, and
indicate what had been done (revision, translation or revision and translation).

There was a full-time writer for the use cases and other documentation. He could also
search in the terminology database and make sure his terminology was consistent, and
write new terms.

Translation of those documents was done also on a continuous basis, using a translation
memory to speed-up things.

The translation effort required was a bit bigger than on a normal project, but there was
almost no delay due to translation.

We can safely say that the additional costs of translation certainly did not exceed the
savings on idle time on the programmer's side.

The fact that the application was translated in a continuous basis also allowed for
bilingual parallel quality testing (the translators could see the application in English and
French in test environment).

Now I will be looking at Wikis to see how they could also help us especially for
multilingual documentation and terminology in the future.

Some screen captures follow.

André Guyon
Translation Bureau / Bureau de la traduction
Public Works and Government Services Canada/ Travaux publics et Services gouvernementaux Canada

Client Domain Project

Author

IReIease -1 j IEuHUn or Link j I j Iz_Jacanhe Ferland (397-7733) j
French English

Term + Term +
Adresse Address

Button or Link
Colurn header
FileMarme
Glossary
Graphic
Institutional menu
Label

Limited length
List element
hessage

Text

Project Authc

j z Js

FOF reports

supplementary Specification

LIC - Administration

LIC - Availability table

LIC - Billing

LIC - Business tables

LIC - Calendar template

LIC - Client Account

LIC - Caontact

LIC - Direct billing

LIC - Email

LIC - External Interface - Client Accaount
LIC - External Interface - Client agreements
LIC - External Interface - MGTC

UIC - Impormptu Report

LIC - Internal Organization

LIC - Interpretation

LIC - Mews

LIC - Order

LIC - Task

LIC - Timeshest

LIC - User registration

LIC - User Hegsist - Sc REgister online
LIC - Yirus =can

Instead of an Abbreviation, we have the ID of the string

Abbreviations

|GUI_n000es

I
Context + |

This list element is displayed on form data exceptions for the alternate province
field.

TR - To be done TR - Work done Extract for Date created Date modified
irm and Tranclate ¥ Venfied
Revize and Translatd | [Transiated x| [Resource Bundle o W I R = o

Fevize and Translate
Revize only

Translate Dnlx
1 T [

Fevised and Translated
Fevized

tanslated

Applets - Up/Down

CodeTable - Billing Activities
CodeTable - Classification
CodeTable - Client Account Types
CodeTable - Communication Modes
CodeTable - Contact Role Types
CodeTable - Countries
CodeTable - Degree of specialization
CodeTable - End Uses

Codetable - Interpretation Order
CodeTable - Language Categaries
CodeTable - QOrder Statuses
CodeTable - Pravince f State
CodeTable - Resource Types
CodeTable - Routing Language
CodeTable - Semwice Categaories
CodeTable - Service items
CodeTable - Task statuses
CodeTable - Tmsmss Method
CodeTable - Unit of measure (LIOK)
CodeTable - Unit Type

Do not extract

