Localization
Better, faster, easier through sharing resources

In 2001, a 30+ team of programmers was to develop a large application (it still is under
development) that would replace more than 20 legacy applications.

Phase 1 deliverables had a fixed mandatory date, and time was running fast.

Translation Bureau could really not deliver in only one official language and the
translation later. Official Languages Act makes it mandatory to deliver documentation
and software simultaneously in English and French. So it really had to be delivered
simultaneously in both official languages.

Back in 2001, some people were proud to say that they could take "only" one month to
translate rather than six or nine as soon as the development would stop. In our case, the
solution was to translate during the development, and to maintain terminology and
definitions from day 1. Developers could consult language specialists to maintain a better
terminology, translators could consult programmers to do a better translation, and the
process was seamless.

From the moment where programmers stopped to work on phase 1, 12 hours later the
application was delivered in both official languages. This was the result of a collaborative
effort involving programmers and translators and using a terminology management tool
as a common ground.

Developers would all textual resources (button, menus, error messages, etc.) in the
terminology management software and indicate what linguistic process should be done
(translate, revise or translate and revise). A few lines of programming allowed one to
generate the interface whenever required.

Since start, there were conventions to respect the rules of internationalization that applied
(leave enough space for French that is longer than English, never merge messages, use
specific rather than generic messages, etc.) In addition, they could provide the translators
items of info that are lacking in most localization jobs.

Programmers could also search for existing items rather than reinventing the wheel.
Various search methods allowed to find rapidly. This would avoid the translators to call
programmers so that they can tell what is the difference between two almost identical
texts (when there was none).

The phone numbers of authors were automatically logged, so that they could be reached
if any clarifications were still needed. But translators really did not have to call often.



Sometimes, the programmer was bilingual, he would then write directly a name for the
button or his message in both languages, but would then check the option Revise.
Otherwise, he would check Revise and translate. Some programmers know it is a good
idea to have their text revised, even in their mother tongue.

The translators could easily find the records that needed to be translated or revised, and
indicate what had been done (revision, translation or revision and translation).

There was a full-time writer for the use cases and other documentation. He could also
search in the terminology database and make sure his terminology was consistent, and
write new terms.

Translation of those documents was done also on a continuous basis, using a translation
memory to speed-up things.

The translation effort required was a bit bigger than on a normal project, but there was
almost no delay due to translation.

We can safely say that the additional costs of translation certainly did not exceed the
savings on idle time on the programmer's side.

The fact that the application was translated in a continuous basis also allowed for
bilingual parallel quality testing (the translators could see the application in English and
French in test environment).

Now I will be looking at Wikis to see how they could also help us especially for
multilingual documentation and terminology in the future.

Some screen captures follow.

André Guyon
Translation Bureau / Bureau de la traduction
Public Works and Government Services Canada/ Travaux publics et Services gouvernementaux Canada
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